In the upper supply curve (rising to the right in light blue), I have the supply of commentary, along with where it intersects today’s demand for commentary. LLMs push the supply curve down and to the right, as shown by the dark blue arrow and the new supply curve. I could certainly write more blog posts faster if I at least started with the bot and then edited. A colleague who is further ahead in this process reports that he routinely asks Claude.ai to summarize each academic paper in a 600-word op-ed, and he has found lately that he doesn’t need to do any editing at all.
The curve shifts both down and to the right, however. We can produce more for the same total cost in time, or we can write the same amount faster.
Does that mean that the commentary business will end because the price will crash? Just asking the question in the context of supply and demand curves already tells you the answer is no. At a lower price, there is more demand, so the quantity expands. This could be the golden age of commentary. Indeed, quantity could expand so much that total revenue (price times quantity, or, in the chart, the size of a box with the origin in one corner and the supply-demand intersection in the other) could actually increase!
This has happened many times before. Movable type lowered the price of books. Did bookselling crash, and the monks starve? No. Demand at a lower price was so strong that bookselling took off, and more people made more money doing it. Though, as always, it was different people. The monks went on to other pursuits. Radio, TV, movies, and the internet each had the same effect on the communication industry. Technology that apparently substitutes for humans lowers costs, supply expands, and the market expands.
Automation and demand
It’s not so obvious, though, that the demand for commentary is that flat. My inbox is already overwhelmed with papers colleagues have sent me to read and interesting-looking blog posts, and there are about 50 tabs open on my browser with more fascinating articles that I have not read. Related, the “price” in my graph, at least for this column, is the price of my time to produce it and the price of your time to read it. AI lowers the price for me, but not for you.
Now, what you need is an assistant who knows you and can read through all the mass of stuff that comes in and select and summarize the good stuff. That, too, is a task AI seems like it might be pretty good at. There’s a joke (here comes another story I picked up somewhere) in which Joe says, “Look how great the AI is. I can input four bullet points and a whole PowerPoint presentation comes out!” Jane, getting the PowerPoint presentation, says, “Look how great the AI is. It boiled down this whole long PowerPoint into four bullet points!”
Of course, it has to somehow know which stories are going to resonate with you. Current algorithms are said to be pretty good, often too good, at feeding you what you like, but I want new things that expand my set of stories, and best of all, the rare things that successfully challenge and change my beliefs.
Indeed, perhaps AI will be more useful as digestion for information overflow than for producing even more to consume. I long wondered, what’s the point of a lecture when you can just read the book? What’s the point of a seminar when you can just read the paper? I think the answer is digestion. An hour-long lecture forces the professor to say what she can in that allotment. That’s a short time, at best amounting to 10,000 words. Professors, at least in economics, notoriously assign endless reading lists that nobody could get through in a decade. In a lecture, they can’t break the short time limit. They can lose everyone, or they can keep it digestible. Similarly, a good seminar with an engaged audience forces digestion.
In sum, perhaps AI will also help on the demand side, shifting demand to the right as well.
Implications for quality
Commentary is also a question of quality and not just quantity. Most commentary is pretty awful. Humans are not that good at reading critically, sticking to the point, maintaining logical continuity, avoiding pointless arguments, remembering basic facts, actually answering questions, and so on. At least the humans on my X stream aren’t. AI editing might dramatically improve the quality of commentary. Just getting it from a C- to a B+ would be a great improvement.
As happens with all technology, AI will need considerable oversight and hand-holding. For the foreseeable future, there will be a need for humans to edit the output of the AI, figure out what prompts to give it to produce writing that will most interest readers, recommend and certify AI-produced material, and so on. The introduction of ATMs increased bank employment by making it easier to open bank branches and offer (overpriced) financial services. (You’ve probably heard that story. I’ve told it quite a few times.) Humans move to the high-value areas.
When I write a column like this one, I have to think things through, and often either the underlying story gets clearer or I realize it’s wrong. If the AI writes all by itself, neither of us is going to get any better. But perhaps the editing part will be just as useful as my slow writing.
A good deal of what I learn from my work comes from conversations that my writing sparks with readers—online, by email, and in person—in which I often find my ideas were wrong or need revising. Once the comments are taken over by bots, I’m not sure that will continue to work. At least until I get a comment-reading bot going.
John H. Cochrane is a senior fellow of the Hoover Institution at Stanford University and was previously a professor of finance at Chicago Booth. This essay is adapted from a post on his blog, The Grumpy Economist.